These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: HMD-EgoPose: head-mounted display-based egocentric marker-less tool and hand pose estimation for augmented surgical guidance. Author: Doughty M, Ghugre NR. Journal: Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2253-2262. PubMed ID: 35701681. Abstract: PURPOSE: The success or failure of modern computer-assisted surgery procedures hinges on the precise six-degree-of-freedom (6DoF) position and orientation (pose) estimation of tracked instruments and tissue. In this paper, we present HMD-EgoPose, a single-shot learning-based approach to hand and object pose estimation and demonstrate state-of-the-art performance on a benchmark dataset for monocular red-green-blue (RGB) 6DoF marker-less hand and surgical instrument pose tracking. Further, we reveal the capacity of our HMD-EgoPose framework for performant 6DoF pose estimation on a commercially available optical see-through head-mounted display (OST-HMD) through a low-latency streaming approach. METHODS: Our framework utilized an efficient convolutional neural network (CNN) backbone for multi-scale feature extraction and a set of subnetworks to jointly learn the 6DoF pose representation of the rigid surgical drill instrument and the grasping orientation of the hand of a user. To make our approach accessible to a commercially available OST-HMD, the Microsoft HoloLens 2, we created a pipeline for low-latency video and data communication with a high-performance computing workstation capable of optimized network inference. RESULTS: HMD-EgoPose outperformed current state-of-the-art approaches on a benchmark dataset for surgical tool pose estimation, achieving an average tool 3D vertex error of 11.0 mm on real data and furthering the progress towards a clinically viable marker-free tracking strategy. Through our low-latency streaming approach, we achieved a round trip latency of 199.1 ms for pose estimation and augmented visualization of the tracked model when integrated with the OST-HMD. CONCLUSION: Our single-shot learned approach, which optimized 6DoF pose based on the joint interaction between the hand of a user and a rigid surgical drill, was robust to occlusion and complex surfaces and improved on current state-of-the-art approaches to marker-less tool and hand pose estimation. Further, we presented the feasibility of our approach for 6DoF object tracking on a commercially available OST-HMD.[Abstract] [Full Text] [Related] [New Search]