These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanisms for sonochemical oxidation of nitrogen.
    Author: Qureishy T, Løyland S, Jørgensen SJ, Færgestad EM, Norby T, Uggerud E.
    Journal: Phys Chem Chem Phys; 2022 Jun 29; 24(25):15357-15364. PubMed ID: 35703372.
    Abstract:
    N2O, and mixtures of N2 and O2, dissolved in water-both in the presence and absence of added noble gases-have been subjected to ultrasonication with quantification of nitrite and nitrate products. Significant increase in product formation upon adding noble gas for both reactant systems is observed, with the reactivity order Ne < Ar < Kr < Xe. These observations lend support to the idea that extraordinarily high electronic and vibrational temperatures arise under these conditions. This is based on recent observations of sonoluminescence in the presence of noble gases and is inconsistent with the classical picture of adiabatic bubble collapse upon acoustic cavitation. The reaction mechanisms of the first few reaction steps necessary for the critical formation of NO are discussed, illustrated by quantum chemical calculations. The role of intermediate N2O in this series of elementary steps is also discussed to better understand the difference between the two reactant sources (N2O and 2 : 1 N2 : O2; same stoichiometry).
    [Abstract] [Full Text] [Related] [New Search]