These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acute Magnetic Resonance Imaging Predictors of Chronic Motor Function and Tissue Sparing in Rat Cervical Spinal Cord Injury. Author: Lee SY, Schmit BD, Kurpad SN, Budde MD. Journal: J Neurotrauma; 2022 Dec; 39(23-24):1727-1740. PubMed ID: 35708112. Abstract: Predicting functional outcomes from spinal cord injury (SCI) at the acute setting is important for patient management. This work investigated the relationship of early magnetic resonance imaging (MRI) biomarkers in a rat model of cervical contusion SCI with long-term functional outcome and tissue sparing. Forty rats with contusion injury at C5 at either the spinal cord midline (bilateral) or over the lateral cord (unilateral) were examined using in vivo multi-modal quantitative MRI at 1 day post-injury. The extent of T2-weighted hyperintensity reflecting edema was greater in the bilateral model compared with the unilateral injury. Diffusion tensor imaging (DTI) exhibited microscopic damage in similar regions of the cord as reductions in fractional anisotropy (FA) and mean diffusivity (MD), but DTI parameter maps were also confounded by the presence of vasogenic edema that locally increased FA and MD. In comparison, filtered diffusion-weighted imaging (fDWI) more clearly delineated the location of acute axonal damage without effects of vasogenic edema. Pairwise correlation analysis revealed that 28-day motor functional outcomes were most strongly associated with the extent of edema (R = -0.69). Principal component analysis identified close associations of motor functional score with tissue sparing, the extent of edema, lesion area, and injury type (unilateral or bilateral). Among the diffusion MRI parameters, lesion areas measured with fDWI had the strongest association with functional outcome (R = -0.41). Voxelwise correlation analysis identified a locus of white matter damage associated with function in the dorsal white matter, although this was likely driven by variance across the two injury patterns (unilateral and bilateral injury). Nonetheless, correlation with motor function within the damaged region found in the voxelwise analysis outperformed morphological lesion area measurement as a predictor of chronic function. Collectively, this study characterized anatomical and diffusion MRI signatures of acute SCI at cervical spine and their association with chronic functional outcomes and histological results.[Abstract] [Full Text] [Related] [New Search]