These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Control of filament length by the regulatory light chains in skeletal and cardiac myosins.
    Author: Margossian SS, Huiatt TW, Slayter HS.
    Journal: J Biol Chem; 1987 Apr 25; 262(12):5791-6. PubMed ID: 3571234.
    Abstract:
    The possible role of the regulatory light chains (LC2) in in vitro assembly of rabbit skeletal and dog cardiac myosins was examined by formation of minifilaments and synthetic thick filaments. After LC2 was removed, the resulting myosin preparations exhibited little aggregation in 0.5 M KCl and 0.05 M potassium phosphate (pH 6.5). Minifilaments migrated as a single, hypersharp peak during sedimentation velocity, but electron microscopic analysis revealed a more destabilized structure for LC2-deficient minifilaments. Thick filaments were formed in buffers containing 0.15 M KCl and the following: 20 mM imidazole; 20 mM imidazole, 5 mM ATP; or 20 mM imidazole, 5 mM ATP, and 5 mM MgCl2, all at pH 7.0. Skeletal and cardiac myosin filaments formed in imidazole buffer alone were bipolar, tapered at both ends, and about 1.6 micron long. Removal of LC2 resulted in the formation of shorter thick filaments (1.2 micron long). This effect could be reversed by reassociation with LC2. Inclusion of ATP in the buffer disrupted the filament structure, resulting in irregular, short filaments (less than 0.6 micron); addition of both ATP and MgCl2 largely reversed the effects of ATP alone. In cardiac myosin filaments, the bare zone diameter increased from 16 nm as measured in control and LC2-recombined samples to 20 nm in LC2-deficient myosin assemblies. These results implicate LC2 in an active role in controlling synthetic thick filament length in both skeletal and cardiac muscles.
    [Abstract] [Full Text] [Related] [New Search]