These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly stable and efficient calcined γ-Al2O3 catalysts loaded with MnOx-CeOx for the ozonation of oxytetracycline.
    Author: Shu X, Bi H, Wang J, Yang J, Wang J, Liu G, Su B.
    Journal: Environ Sci Pollut Res Int; 2022 Nov; 29(53):80399-80410. PubMed ID: 35715680.
    Abstract:
    Catalytic ozonation with supported metal oxides is a promising strategy for addressing refractory pollutants in wastewater. In this study, γ-Al2O3 supported MnOx-CeOx catalysts (MC1, MC2, and MC3) obtained at different calcination temperatures (400 °C, 550 °C, and 700 °C) were applied as effective catalysts for ozonation and explored the feasibility of the treatment of oxytetracycline (OTC) wastewater. Comparatively, the MC2 possessed the highest molar ratios of Mn3+/Mn4+ (1.60) and Ce3+/Ce4+ (0.96), the largest surface area (273.8 m2 g-1) with a petal-shaped structure, and most abundant surface hydroxyls (3.78 mmol g-1). These physicochemical characteristics benefited the surface reaction and resulted in the acceleration of ozone decomposition, electron transfer, and •OH generation, thereby improving the catalyst's adsorption ability and catalytic activity. The combination with MC2 increased the OTC and COD removal of the ozonation process from 59.1% and 29.0% to 94.7% and 83.3% in 25 min, respectively. By employing electron paramagnetic resonance (EPR) and radical quenching experiments, it was verified that •OH species generation promoted the mineralization of OTC. The possible degradation pathways of OTC were investigated through mass spectrometry, and the route consisted of dehydration, deamination, and demethylation. Moreover, during a 12-day continuous experiment, MC2 catalyst exhibited excellent reusability and catalytic stability, with COD removal efficiencies above 80%.
    [Abstract] [Full Text] [Related] [New Search]