These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characteristics and sources of volatile organic compounds (VOCs) in Xinxiang, China, during the 2021 summer ozone pollution control.
    Author: Li Y, Liu Y, Hou M, Huang H, Fan L, Ye D.
    Journal: Sci Total Environ; 2022 Oct 10; 842():156746. PubMed ID: 35718178.
    Abstract:
    Real-time monitoring of volatile organic compounds (VOCs) was conducted in Xinxiang, China, during the implementation of Xinxiang's ozone pollution control period (CP) in June 2021. To evaluate the effectiveness of the control measures, three study periods were determined by combining meteorological conditions and the implementation time of the control measures: before, during, and after the CP of ozone pollution (BCP, CP, and ACP, respectively). The average concentrations of VOCs during the three periods were 41.20 ± 4.99 ppbv, 33.64 ± 5.65 ppbv, and 37.42 ± 2.59 ppbv, respectively, with the same top three components, namely oxygenated VOCs (OVOCs), alkanes, and halogenated hydrocarbons (XVOCs). However, the concentrations of these three components decreased substantially during the CP (by 19 %, 18 %, and 11 %, respectively). The ozone formation potential (OFP) during the BCP was 144.47 ppbv, which was 1.2 times and 1.3 times higher than those during the ACP and CP periods, respectively. During the CP, the proportion of alkenes that contributed to the OFP decreased significantly by 24 %. Five types of VOCs sources were determined by positive matrix factorization (PMF): (1) solvent use, (2) biogenic, (3) secondary formation, (4) industrial process, and (5) vehicle exhaust and fuel evaporation sources. The VOCs emissions from industrial processes decreased by 54 % during the CP, whereas those from vehicle exhaust and fuel evaporation sources decreased by 36 %, indicating the effectiveness of emission control measures and the importance of these two sources for VOCs control in Xinxiang. In terms of regional transport, the results of the spatial analysis revealed that Hebi and Anyang in the northeast and Zhengzhou and Pingdingshan in the southwest, affected significantly the VOCs of Xinxiang. These results highlight the importance of controlling VOCs emissions in Xinxiang. Furthermore, attention should be paid to controlling the regional transport of surrounding cities.
    [Abstract] [Full Text] [Related] [New Search]