These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Model for photon migration in turbid biological media.
    Author: Bonner RF, Nossal R, Havlin S, Weiss GH.
    Journal: J Opt Soc Am A; 1987 Mar; 4(3):423-32. PubMed ID: 3572576.
    Abstract:
    Various characteristics of photon diffusion in turbid biological media are examined. Applications include the interpretation of data acquired with laser Doppler blood-flow monitors and the design of protocols for therapeutic excitation of tissue chromophores. Incident radiation is assumed to be applied at an interface between a turbid tissue and a transparent medium, and the reemission of photons from that interface is analyzed. Making use of a discrete lattice model, we derive an expression for the joint probability gamma(n, rho)d2 rho that a photon will be emitted in the infinitesimal area d2 rho centered at surface point rho = (x, y), having made n collisions with the tissue. Mathematical expressions are obtained for the intensity distribution of diffuse surface emission, the probability of photon absorption in the interior as a function of depth, and the mean path length of detected photons as a function of the distance between the site of the incident radiation and the location of the detector. We show that the depth dependence of the distribution of photon absorption events can be inferred from measured parameters of the surface emission profile. Results of relevant computer simulations are presented, and illustrative experimental data are shown to be in accord with the theory.
    [Abstract] [Full Text] [Related] [New Search]