These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Continuous mHealth Patch Monitoring for the Algorithm-Based Detection of Atrial Fibrillation: Feasibility and Diagnostic Accuracy Study.
    Author: Santala OE, Lipponen JA, Jäntti H, Rissanen TT, Tarvainen MP, Laitinen TP, Laitinen TM, Castrén M, Väliaho ES, Rantula OA, Naukkarinen NS, Hartikainen JEK, Halonen J, Martikainen TJ.
    Journal: JMIR Cardio; 2022 Jun 21; 6(1):e31230. PubMed ID: 35727618.
    Abstract:
    BACKGROUND: The detection of atrial fibrillation (AF) is a major clinical challenge as AF is often paroxysmal and asymptomatic. Novel mobile health (mHealth) technologies could provide a cost-effective and reliable solution for AF screening. However, many of these techniques have not been clinically validated. OBJECTIVE: The purpose of this study is to evaluate the feasibility and reliability of artificial intelligence (AI) arrhythmia analysis for AF detection with an mHealth patch device designed for personal well-being. METHODS: Patients (N=178) with an AF (n=79, 44%) or sinus rhythm (n=99, 56%) were recruited from the emergency care department. A single-lead, 24-hour, electrocardiogram-based heart rate variability (HRV) measurement was recorded with the mHealth patch device and analyzed with a novel AI arrhythmia analysis software. Simultaneously registered 3-lead electrocardiograms (Holter) served as the gold standard for the final rhythm diagnostics. RESULTS: Of the HRV data produced by the single-lead mHealth patch, 81.5% (3099/3802 hours) were interpretable, and the subject-based median for interpretable HRV data was 99% (25th percentile=77% and 75th percentile=100%). The AI arrhythmia detection algorithm detected AF correctly in all patients in the AF group and suggested the presence of AF in 5 patients in the control group, resulting in a subject-based AF detection accuracy of 97.2%, a sensitivity of 100%, and a specificity of 94.9%. The time-based AF detection accuracy, sensitivity, and specificity of the AI arrhythmia detection algorithm were 98.7%, 99.6%, and 98.0%, respectively. CONCLUSIONS: The 24-hour HRV monitoring by the mHealth patch device enabled accurate automatic AF detection. Thus, the wearable mHealth patch device with AI arrhythmia analysis is a novel method for AF screening. TRIAL REGISTRATION: ClinicalTrials.gov NCT03507335; https://clinicaltrials.gov/ct2/show/NCT03507335.
    [Abstract] [Full Text] [Related] [New Search]