These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamic Genome-Wide Transcription Profiling and Direct Target Genes of CmWC-1 Reveal Hierarchical Light Signal Transduction in Cordyceps militaris. Author: Zhang J, Wang F, Liu M, Fu M, Dong C. Journal: J Fungi (Basel); 2022 Jun 11; 8(6):. PubMed ID: 35736107. Abstract: Light is necessary for primordium differentiation and fruiting body development for most edible fungi; however, light perception and signal transduction have only been well studied in model fungi. In this study, a hierarchical network of transcriptional response to light in Cordyceps militaris, one of the edible fungi, has been described on a genome-wide scale using dynamic transcriptome analysis. It was shown that light regulated the transcript of 1722 genes, making up 18% of the whole genome of C. militaris. Analysis of light-responsive genes in C. militaris identified 4 categories: immediate-early, early, late, and continuous light-responsive genes, and the gene number increased distinctly with prolonged light exposure. Light-responsive genes with distinct functional categories showed specific time-dependent regulation. The target genes of CmWC-1, the most important photoreceptor, were revealed by ChIP-seq. A total of 270 significant peaks corresponding to 427 genes were identified to be directly regulated by CmWC-1, among which 143 genes respond to light. Based on 270 ChIP-seq peaks, the binding site for CmWC-1 was identified as AAATCAGACCAC/GTGGTCTGATTT, differing from the binding site by the homolog in Neurospora crassa. Elucidating the mechanisms of light perception and signal transduction will be helpful for further research on the fruiting body development in edible fungi.[Abstract] [Full Text] [Related] [New Search]