These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TiO2nanotubes-MoS2/PDA-LL-37 exhibits efficient anti-bacterial activity and facilitates new bone formation under near-infrared laser irradiation.
    Author: Jin M, Zhu J, Meng Z, Jiang X, Chen Z, Xu J, Gao H, Zhu J, Wu F.
    Journal: Biomed Mater; 2022 Jun 24; 17(4):. PubMed ID: 35748526.
    Abstract:
    Titanium dioxide (TiO2), as one of the titanium (Ti)-based implants, holds a promise for a variety of anti-bacterial application in medical research. In the current study, a functional molybdenum disulfide (MoS2)/polydopamine (PDA)-LL-37 coating on titanium dioxide (TiO2) implant was prepared. Anodic oxidation and hydrothermal treatment was given to prepare TiO2nanotubes-MoS2/PDA-LL-37 (T-M/P-L). Thein vitroosteogenic effect of T-M/P-L was evaluated by measuring mesenchymal stem cell (MSC) adhesion, proliferation, alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization, collagen secretion and osteoblast-specific messenger RNAs (mRNAs) expression. The determination on the anti-bacterial ability of T-M/P-L was followed. Furthermore, the ability of T-M/P-L to promote bone formationin vivowas evaluated. Near-infrared (NIR) laser irradiation exposure enabled the T-M/P-L coating-endowed Ti substrates to hold effective anti-bacterial ability. T-M/P-L promoted the adhesion and proliferation of MSCs. In addition, an increase was witnessed regarding the ALP activity, collagen secretion and ECM mineralization, along with the expression of runt-related transcription factor 2, ALP and osteocalcin in the presence of T-M/P-L. Additionally, T-M/P-L could stimulate endothelial cells to secrete vascular endothelial growth factor (VEGF) and promote capillary-like tubule formation. Upon NIR laser irradiation exposure, T-M/P-L not only exhibited efficientin vivoanti-bacterial activity but also facilitated new bone formation. Collectively, T-M/P-L had enhanced anti-bacterial and osteogenic activity under NIR laser irradiation.
    [Abstract] [Full Text] [Related] [New Search]