These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multifaceted potential applicability of hydrotalcite-type anionic clays from green chemistry to environmental sustainability.
    Author: Kumari S, Sharma A, Kumar S, Thakur A, Thakur R, Bhatia SK, Sharma AK.
    Journal: Chemosphere; 2022 Nov; 306():135464. PubMed ID: 35760140.
    Abstract:
    Hydrotalcite-like anionic clays (HTs) also known as Layered double hydroxides (LDHs) have been developed as multifunctional materials in numerous applications related to catalysis, adsorption, and ion-exchange processes. These materials constitute an important class of ionic lamellar solid clays of Brucite-like structure which comprise of consecutive layers of divalent and trivalent metal cations with charge balancing anions and water molecules in interlayer space. These materials have received increasing attention in research due to their interesting properties namely layered structure, ease of preparation, flexible tunability, ability to intercalate different types of anions, electronic properties, high thermal stability, high biocompatibility, and easy biodegradation. Moreover, HTs/LDHs have unique tailorable and tuneable characteristics such as both acidic and basic sites, anion exchange capability, surface area, basal spacing, memory effect, and also exhibit high exchange capacities, which makes them versatile materials for a wide range of applications and extended their horizons to diverse areas of science and technology. This study enlightens the various rational researches related to the synthetic methods and features focusing on synthesis and/or fabrication with other hybrids and their applications. The diverse applications (namely catalyst, adsorbent to toxic chemicals, agrochemicals management, non-toxic flame retardants, and recycling of plastics) of these multifunctional materials related to a clean and sustainable environment were also summarized.
    [Abstract] [Full Text] [Related] [New Search]