These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Third harmonic characterization of antiferromagnetic heterostructures.
    Author: Cheng Y, Cogulu E, Resnick RD, Michel JJ, Statuto NN, Kent AD, Yang F.
    Journal: Nat Commun; 2022 Jun 27; 13(1):3659. PubMed ID: 35760929.
    Abstract:
    Electrical switching of antiferromagnets is an exciting recent development in spintronics, which promises active antiferromagnetic devices with high speed and low energy cost. In this emerging field, there is an active debate about the mechanisms of current-driven switching of antiferromagnets. For heavy-metal/ferromagnet systems, harmonic characterization is a powerful tool to quantify current-induced spin-orbit torques and spin Seebeck effect and elucidate current-induced switching. However, harmonic measurement of spin-orbit torques has never been verified in antiferromagnetic heterostructures. Here, we report harmonic measurements in Pt/α-Fe2O3 bilayers, which are explained by our modeling of higher-order harmonic voltages. As compared with ferromagnetic heterostructures where all current-induced effects appear in the second harmonic signals, the damping-like torque and thermally-induced magnetoelastic effect contributions in Pt/α-Fe2O3 emerge in the third harmonic voltage. Our results provide a new path to probe the current-induced magnetization dynamics in antiferromagnets, promoting the application of antiferromagnetic spintronic devices.
    [Abstract] [Full Text] [Related] [New Search]