These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stress-induced HPA activation in virtual navigation and spatial attention performance.
    Author: Richardson AE, VanderKaay Tomasulo MM.
    Journal: BMC Neurosci; 2022 Jun 28; 23(1):40. PubMed ID: 35764937.
    Abstract:
    BACKGROUND: Previous research has shown that spatial performance (e.g. navigation, visuospatial memory, attention) can be influenced by acute stress; however, studies have produced mixed findings sometimes showing an improvement after stress, other times showing impairment or no overall effect. Some of these discrepancies may be related to: the type of stress system activated by the stressor (sympathetic adrenal medulla [SAM] or hypothalamic-pituitary-adrenocortical [HPA]); whether cortisol responders vs. nonresponders are analyzed subsequent to main effects; and sex differences in stress responses. In the present study, we examine the influence of HPA activation from an acute laboratory stressor (Socially Evaluated Cold Pressor test [SECPT]) on performance during two spatial tasks: Useful Field of View (UFOV; a measure of spatial attention) and virtual reality (VR) navigation. We assigned 31 males and 30 females to either the SECPT or a Non-Stress condition prior to the two spatial tasks. Cardiovascular measures including heart rate and blood pressure, and salivary cortisol biosamples were obtained at specific time points. RESULTS: Participants in the Stress condition showed increases in heart rate, systolic and diastolic blood pressure indicating sympathetic adrenal medulla (SAM) axis activation. Stress also led to increases in salivary cortisol, suggesting hypothalamic-pituitary-adrenocortical (HPA) activation. Stress did not influence overall performance in the spatial attention UFOV or the VR navigation task. However, a sex difference in spatial attention was detected when participants were divided into Stress-cortisol responders and non-responders in the UFOV task. Male Stress-cortisol responders (n = 9) showed better UFOV accuracy than female Stress-cortisol responders (n = 6); no sex differences were found among the Non-Stress control group. Furthermore, for females in the stress condition (n = 14), higher cortisol responses were associated with lower spatial attention performance. CONCLUSIONS: Socially Evaluated Cold Pressor stress resulted in no change in speed or accuracy in a VR navigation task. For the spatial attention task, the SECPT led to a sex difference among Stress-cortisol responders with males showing improved accuracy over females. The relationship between HPA activation and prefrontal cortex activity may be necessary to understand sex differences in spatial attention performance.
    [Abstract] [Full Text] [Related] [New Search]