These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Na-Cl Co-transporter (NCC) gene inactivation is associated with improved bone microstructure.
    Author: Qi W, Yin Z, Liang H, Chi Y, Liu W, Jiajue R, Jiang Y, Wang O, Li M, Xing X, Tong A, Xia W.
    Journal: Osteoporos Int; 2022 Oct; 33(10):2193-2204. PubMed ID: 35767093.
    Abstract:
    UNLABELLED: Gitelman syndrome (GS) is the disease model of the inactivation of thiazide-sensitive sodium chloride cotransporter (NCC), which is believed to benefit bone mass and reduce fracture risk. In this study, we found that GS patients have superior bone microarchitecture, which is associated with the disease status. Several decreased bone parameters with aging in healthy controls were reversed in GS patients to a certain extent. PURPOSE: To evaluate the impact of the inactivation of NCC on bone turnover and microarchitecture in Gitelman syndrome patients. METHODS: A cross-sectional study was conducted in 45 GS patients (25 males and 20 females). Serum procollagen type 1 N-terminal propeptide (P1NP), β-carboxy-terminal crosslinked telopeptide of type 1 collagen (β-CTX), and osteocalcin were measured. High-resolution peripheral quantitative computed tomography (HR-pQCT) was conducted to evaluate bone microarchitecture in GS patients and age- and sex-matched healthy controls. Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (DXA) simultaneously. RESULTS: GS patients had a relatively lower level of β-CTX. aBMD at several skeletal sites was improved in GS patients. HR-pQCT assessment revealed that GS patients had slightly thinner but significantly more compact trabecular bone (increased trabecular number and decreased thickness), notably decreased cortical porosity, and increased volume BMD (vBMD) at both the radius and tibia compared with controls. The disease severity, represented as the relationship with the minimum level of magnesium during the course and standard base excess, was associated with bone microarchitecture parameters after adjusting for age, sex, and BMI. The decreased vBMD and Tb.BV/TV, and increased Tb.Sp and Ct.Po with aging, were reversed in GS patients to a certain extent. CONCLUSION: GS patients have superior bone microarchitecture, which suggests that the inactivation of NCC might be beneficial for avoiding osteoporosis.
    [Abstract] [Full Text] [Related] [New Search]