These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Accuracy of the 3-dimensional virtual patient representation obtained by using 4 different techniques: An in vitro study.
    Author: Revilla-León M, Zeitler JM, Barmak AB, Kois JC.
    Journal: J Prosthet Dent; 2024 Jun; 131(6):1178-1188. PubMed ID: 35773020.
    Abstract:
    STATEMENT OF PROBLEM: Facial and intraoral scans can be aligned with or without the assistance of extraoral scan body systems to obtain a 3-dimensional (3D) virtual patient representation. However, the accuracy of the virtual patient remains uncertain. PURPOSE: The purpose of this in vitro study was to measure the accuracy of the virtual patient representation obtained by superimposing facial and intraoral digital scans with 4 different techniques (with and without the usage of extraoral scan bodies) and to measure the operator influence on the accuracy of the virtual patient integration. MATERIAL AND METHODS: Three markers were placed in the jaw simulation of a mannequin on the right (r), center (c), and left (l) surfaces. Five additional markers were attached to the mesiobuccal cusp of the right first molar (RM), cusp of the right canine (RC), buccal surface of the right central incisor (CI), cusp of the left canine (LC), and mesiobuccal cusp of the left first molar (LM). A reference scan (control scan) of the mannequin was obtained by using an industrial scanner (Gom ATOS Q 3D 12 M). Four different groups were created depending on the technique used: 3D scan body (3D scan body) (3D-SB group), AFT (AFT Dental System) (AFT group), Sat 3D (Sat 3D) (Sat3D group), and without using a scan body system (No-SB group). Additionally, a digital scan of the typodont was obtained with an intraoral scanner (TRIOS 4). The virtual patient integration was performed 10 times per group by 2 independent operators by using a software program (DentalCAD, Galway). Each operator obtained a total of 9 interlandmark measurements on the reference scan and on each virtual patient integration of each group with the measurement tool of the computer-aided design program. The data were analyzed by using 4-way ANOVA followed by the pairwise comparison Tukey tests (α=.05). RESULTS: The group (P<.001), specimen (P<.001), and operator (P<.001) significantly influenced the trueness discrepancies obtained. Additionally, the 3D-SB group had the best trueness (244 μm), and the No-SB group had the worst trueness (346 μm). Operator 1 (279 μm) obtained significantly better trueness than operator 2 (295 μm). Group (P<.001), specimen (P<.001), and operator (P<.001) significantly influenced precision discrepancies, with the AFT (149 μm) and 3D-SB (154 μm) groups having the best precision and the No-SB group (269 μm) the worst precision. Operator 1 (176 μm) obtained significantly better precision than operator 2 (197 μm). CONCLUSIONS: The techniques tested influenced the accuracy of the 3D virtual patient representation. The 3D-SB group had the best trueness, and the AFT and 3D-SB groups had the best precision, while the No-SB group showed the lowest trueness and precision values. Operator handling had a significant effect on the trueness and precision values of the virtual patient integrations tested.
    [Abstract] [Full Text] [Related] [New Search]