These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of temperature, soil type and compost amendment on the survival, growth and persistence of Listeria monocytogenes of non-environmental (food-source associated) origin in soil.
    Author: Alegbeleye O, Sant'Ana AS.
    Journal: Sci Total Environ; 2022 Oct 15; 843():157033. PubMed ID: 35777564.
    Abstract:
    Listeria monocytogenes of varied sources including food-related sources may reach the soil. Associated food safety and environmental health risks of such contamination depend significantly on the capacity of L. monocytogenes to survive in the soil. This study assessed the survival of 13 L. monocytogenes strains isolated from food and food processing environments and a cocktail of three of the strains in two types of soils (loam and sandy) under controlled temperature conditions: 5, 10, 20, 25, 30℃ and 'uncontrolled' ambient temperature conditions in a tropical region. The impact of compost amendment on the survival of L. monocytogenes in the two different types of soils was also assessed. Soil type, temperature and compost amendment significantly (P <0.001) impacted the survival of L. monocytogenes in soil. Temperature variations affected the survival of L. monocytogenes in soil, where some strains such as strain 732, a L. monocytogenes 1/2a strain survived better at lower temperature (5°C), for which counts of up to 10.47 ± 0.005 log CFU/g were recovered in compost-amended sandy soil, 60 days post-inoculation. Some other strains such as strain 441, a L. monocytogenes 1/2a survived best at intermediate temperature (25 and 30 °C), while others such as 2739 (L. monocytogenes 1/2b) thrived at higher temperature (between 30 °C - 37 °C). There were significant correlations between the influence of temperature and soil type, where lower temperature conditions (5°C - 20°C) were generally more suitable for survival in sandy soil compared to higher temperature conditions. For some of the strains that thrived better in sandy soil at lower temperature, Pearson correlation analysis found significant correlations between temperature and soil type. Steady, controlled temperature generally favored the survival of the strains compared to uncontrolled ambient temperature conditions, except for the cocktail. The cocktail persisted until the last day of post-inoculation storage (60th day) in all test soils and under all incubation temperature conditions. Loam soil was more favorable for the survival of L. monocytogenes and compost amendment improved the survival of the strains, especially in compost-amended sandy soil. Listeria monocytogenes may exhibit variable survival capacity in soil, depending on conditions such as soil type, compost amendment and temperature.
    [Abstract] [Full Text] [Related] [New Search]