These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Magnesium and octylguanidinium inhibition of monovalent cation translocation in mitochondria.
    Author: Beaty G, Gutiérrez C, López-Vancell R, Estrada S.
    Journal: Acta Physiol Pharmacol Latinoam; 1986; 36(3):217-32. PubMed ID: 3577803.
    Abstract:
    We have studied the inhibitory effects of several cations (OG+, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, La3+) on the uniport and exchange pathways for Na+ and K+ of rat liver mitochondria. Swelling of mitochondria suspended in sodium or potassium acetates indicates that: 1. Sodium passive influx to inhibited mitochondria is not affected by OG+ (in the microM range), and mM concentrations of polyvalent cations only induce a poor inhibition, the sequence being: La3+ greater than Mn2+ greater than Ca2+ greater than Mg2+ greater than Sr2+ = 0. 2. Sodium active influx is 50% inhibited by 60 microM Mg2+ or 90 microM OG+. La3+, Mn2+, Ca2+ and Sr2+ also inhibit Na+ influx (mM range). 10 mM Mg2+ or 35 microM OG+ are required to inhibit 50% K+ active influx. 3. Alkali cation efflux from partially swollen inhibited mitochondria is 50% blocked by 2 mM Mg2+ or 105 microM OG+ when sodium is the major permeable cation in the bathing solution. 3 mM Mg2+ or 3.8 microM OG+ are required for 50% inhibition when mitochondria are suspended in potassium acetate. 4. Alkali cation efflux from partially swollen respiring mitochondria suspended in sodium acetate is promoted by concentrations above 0.1-0.2 mM Mg2+ or 50-100 microM OG+. These data fit a mechanism including an energy-dependent Mg2+ and OG+ sensitive inward sodium translocator and a Mg2+ and OG+ insensitive cation/H+ exchanger working in dynamic balance.
    [Abstract] [Full Text] [Related] [New Search]