These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fourth ventricular floor in human embryos: scanning electron microscopic observations.
    Author: Tanaka O, Otani H, Fujimoto K.
    Journal: Am J Anat; 1987 Feb; 178(2):193-203. PubMed ID: 3578083.
    Abstract:
    The ultrastructural surface features of the normal fourth ventricular floor of seven human embryos ranging from Carnegie stage 14 to stage 19 (crown-rump length: 7.6-16.2 mm) were examined by using scanning electron microscopy (SEM). Low-power SEM views showed the median sulcus, sulcus limitans, and neuromeres, transient structures characteristic of the earlier embryonic period. High-power SEM observation revealed supraependymal cells (SE cells) and supraependymal fibers (SE fibers) which exhibited a characteristic localization, as well as generalized surface-membrane modifications such as microvilli and cilia. SE cells could be classified into two major groups. The type 1 SE cells seem to possess neuronal functions, as deduced from morphological similarities to their counterparts in adults and the specialized distribution closely related to neuromeres. The type 2 SE cell morphologically resembled the phagocytic SE cell described in related literature. SE fibers ran a course either rostrocaudally in the median sulcus or mediolaterally on the neuromeres, most frequently near the interneuromeric cleft; they made contact with type 1 SE cells and ependymal surface modifications and then penetrated the ependymal layer.
    [Abstract] [Full Text] [Related] [New Search]