These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Automated versus manual B-lines counting, left ventricular outflow tract velocity time integral and inferior vena cava collapsibility index in COVID-19 patients.
    Author: Damodaran S, Kulkarni AV, Gunaseelan V, Raj V, Kanchi M.
    Journal: Indian J Anaesth; 2022 May; 66(5):368-374. PubMed ID: 35782660.
    Abstract:
    BACKGROUND AND AIMS: The incorporation of artificial intelligence (AI) in point-of-care ultrasound (POCUS) has become a very useful tool to quickly assess cardiorespiratory function in coronavirus disease (COVID)-19 patients. The objective of this study was to test the agreement between manual and automated B-lines counting, left ventricular outflow tract velocity time integral (LVOT-VTI) and inferior vena cava collapsibility index (IVC-CI) in suspected or confirmed COVID-19 patients using AI integrated POCUS. In addition, we investigated the inter-observer, intra-observer variability and reliability of assessment of echocardiographic parameters using AI by a novice. METHODS: Two experienced sonographers in POCUS and one novice learner independently and consecutively performed ultrasound assessment of B-lines counting, LVOT-VTI and IVC-CI in 83 suspected and confirmed COVID-19 cases which included both manual and AI methods. RESULTS: Agreement between automated and manual assessment of LVOT-VTI, and IVC-CI were excellent [intraclass correlation coefficient (ICC) 0.98, P < 0.001]. Intra-observer reliability and inter-observer reliability of these parameters were excellent [ICC 0.96-0.99, P < 0.001]. Moreover, agreement between novice and experts using AI for LVOT-VTI and IVC-CI assessment was also excellent [ICC 0.95-0.97, P < 0.001]. However, correlation and intra-observer reliability between automated and manual B-lines counting was moderate [(ICC) 0.52-0.53, P < 0.001] and [ICC 0.56-0.69, P < 0.001], respectively. Inter-observer reliability was good [ICC 0.79-0.87, P < 0.001]. Agreement of B-lines counting between novice and experts using AI was weak [ICC 0.18, P < 0.001]. CONCLUSION: AI-guided assessment of LVOT-VTI, IVC-CI and B-lines counting is reliable and consistent with manual assessment in COVID-19 patients. Novices can reliably estimate LVOT-VTI and IVC-CI using AI software in COVID-19 patients.
    [Abstract] [Full Text] [Related] [New Search]