These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Laser cluster interaction in ambient magnetic fields for accelerating electrons in two stages without external injection. Author: Swain K, Mahalik SS, Kundu M. Journal: Sci Rep; 2022 Jul 04; 12(1):11256. PubMed ID: 35787644. Abstract: In the few-cycle pulse regime of laser-cluster interaction (intensity [Formula: see text], wavelength [Formula: see text] nm), laser absorption is mostly collisionless and may happen via anharmonic resonance (AHR) process in the overdense (cluster) plasma potential. Many experiments, theory and simulation show average absorbed energy per cluster-electron ([Formula: see text]) close to the electron's ponderomotive energy ([Formula: see text]) in the collisionless regime. In this work, by simple rigid sphere model (RSM) and detailed particle-in-cell (PIC) simulation, we show enhanced [Formula: see text] 30-70[Formula: see text]-a 15-30 fold increase-with an external (crossed) magnetic field near the electron-cyclotron resonance (ECR). Due to relativistic mass increase, electrons quickly deviate from the standard (non-relativistic) ECR, but time-dependent relativistic-ECR (RECR) happens which also contributes to enhanced [Formula: see text]. Here laser is coupled to electrons in two stages, i.e, AHR and ECR/RECR. To probe further we retrieve the phase-difference [Formula: see text] between the driving electric field and corresponding velocity component for each electron (in PIC and RSM). We find absorption by electron via AHR happens in a very short interval [Formula: see text] for less than half a laser period where [Formula: see text] remains close to [Formula: see text] (necessary condition for maximum laser absorption) and then [Formula: see text] drops to its initial [Formula: see text] (meaning no absorption) after such short-lived AHR. On the contrary, auxiliary magnetic field near the ECR modifies AHR scenario inside the cluster and also helps maintaining the required phase [Formula: see text] for the liberated cluster-electron accompanied by frequency matching for ECR/RECR for a prolonged [Formula: see text] (which covers 50-60% of the laser pulse through pulse maxima) even after AHR-leading to jump in [Formula: see text] 30-70[Formula: see text]. We note that to realize the second stage of enhanced energy coupling via ECR/RECR, the first stage via AHR is necessary.[Abstract] [Full Text] [Related] [New Search]