These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Removal and kinetics of cadmium and copper ion adsorption in aqueous solution by zeolite NaX synthesized from coal gangue. Author: Liang Z, Gao Q, Wu Z, Gao H. Journal: Environ Sci Pollut Res Int; 2022 Dec; 29(56):84651-84660. PubMed ID: 35788478. Abstract: Zeolite can remove the heavy metals in wastewater, but the removal efficiency was determined by the types of zeolites and the treatment conditions. In this study, a kind of zeolite NaX synthesized from the coal gangue, a by-product of coal production, was used and the removal efficiency of Cd2+ and Cu2+and the kinetic models were studied. The effects of its dosage, initial pH value of wastewater, and adsorption temperature on its adsorption of heavy metals Cd2+ and Cu2+ in the simulated wastewater were studied through the indoor experiments in laboratory, and the adsorption mechanism was analyzed by the adsorption kinetic model based on its adsorption efficiency and its structures. The results show that the zeolite NaX synthesized from coal gangue has a good adsorption effect on Cd2+ and Cu2+. The adsorption reaches the best effect when the dosage of zeolite is 2 g/L, the initial pH of simulated wastewater is 5, the adsorption temperature is room temperature (25 ℃), and the removal efficiency of Cd2+ and Cu2+ (100 mg/L) is more than 90%. Additionally, the Langmuir, Freundlich, and Temkin isothermal adsorption models were used to compare and analyze the adsorption effects. The equilibrium data was better fitted by the Langmuir model with the maximum adsorption capacities of 100.11 mg/g (Cd2+) and 95.29 mg/g (Cu2+), and both separation coefficients were 0-1, which shows that the process was the favorable adsorption. Weber Morris diffusion model shows that the adsorption process at 120 min was more consistent with the pseudo-second-order kinetics model, and the adsorption efficiency was simultaneously controlled by the liquid diffusion step and intraparticle diffusion step. Moreover, the removal mechanism of Cd2+ and Cu2+ mainly includes physical adsorption and ion exchange. Therefore, the adsorption effect of zeolite synthesized from coal gangue is remarkable, which will provide a feasible and potential alternative for its resource application.[Abstract] [Full Text] [Related] [New Search]