These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Is it possible to compare inhibitory and excitatory intracortical circuits in face and hand primary motor cortex?
    Author: Ginatempo F, Loi N, Manca A, Rothwell JC, Deriu F.
    Journal: J Physiol; 2022 Aug; 600(15):3567-3583. PubMed ID: 35801987.
    Abstract:
    Face muscles are important in a variety of different functions, such as feeding, speech and communication of non-verbal affective states, which require quite different patterns of activity from those of a typical hand muscle. We ask whether there are differences in their neurophysiological control that might reflect this. Fifteen healthy individuals were studied. Standard single- and paired-pulse transcranial magnetic stimulation (TMS) methods were used to compare intracortical inhibitory (short interval intracortical inhibition (SICI); cortical silent period (CSP)) and excitatory circuitries (short interval intracortical facilitation (SICF)) in two typical muscles, the depressor anguli oris (DAO), a face muscle, and the first dorsal interosseous (FDI), a hand muscle. TMS threshold was higher in DAO than in FDI. Over a range of intensities, resting SICF was not different between DAO and FDI, while during muscle activation SICF was stronger in FDI than in DAO (P = 0.012). At rest, SICI was stronger in FDI than in DAO (P = 0.038) but during muscle contraction, SICI was weaker in FDI than in DAO (P = 0.034). We argue that although many of the difference in response to the TMS protocols could result from the difference in thresholds, some, such as the reduction of resting SICI in DAO, may reflect fundamental differences in the physiology of the two muscle groups. KEY POINTS: Transcranial magnetic stimulation (TMS) single- and paired-pulse protocols were used to investigate and compare the activity of facilitatory and inhibitory intracortical circuits in a face (depressor anguli oris; DAO) and hand (first dorsal interosseous; FDI) muscles. Several TMS intensities and interstimulus intervals were tested with the target muscles at rest and when voluntarily activated. At rest, intracortical inhibitory activity was stronger in FDI than in DAO. In contrast, during muscle contraction inhibitory activity was stronger in DAO than in FDI. As many previous reports have found, the motor evoked potential threshold was higher in DAO than in FDI. Although many of the differences in response to the TMS protocols could result from the difference in thresholds, some, such as the reduction of resting short interval intracortical inhibition in DAO, may reflect fundamental differences in the physiology of the two muscle groups.
    [Abstract] [Full Text] [Related] [New Search]