These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tide-Triggered Production of Reactive Oxygen Species in Coastal Soils.
    Author: Zhao G, Wu B, Zheng X, Chen B, Kappler A, Chu C.
    Journal: Environ Sci Technol; 2022 Aug 16; 56(16):11888-11896. PubMed ID: 35816724.
    Abstract:
    We report an unrecognized, tidal source of reactive oxygen species (ROS). Using a newly developed ROS-trapping gel film, we observed hot spots for ROS generation within ∼2.5 mm of coastal surface soil. Kinetic analyses showed rapid production of hydroxyl radicals (OH), superoxide (O2•-), and hydrogen peroxide (H2O2) upon a shift from high tide to low tide. The ROS production exhibited a distinct rhythmic fluctuation. The oscillations of the redox potential and dissolved oxygen concentration followed the same pattern as the OH production, suggesting the alternating oxic-anoxic conditions as the main geochemical drive for ROS production. Nationwide coastal field investigations confirmed the widespread and sustainable production of ROS via tidal processes (22.1-117.4 μmol/m2/day), which was 5- to 36-fold more efficient than those via classical photochemical routes (1.5-7.6 μmol/m2/day). Analyses of soil physicochemical properties demonstrated that soil redox-metastable components such as redox-active iron minerals and organic matter played a key role in storing electrons at high tide and shuttling electrons to infiltrated oxygen at low tide for ROS production. Our work sheds light on a ubiquitous but previously overlooked tidal source of ROS, which may accelerate carbon and metal cycles as well as pollutant degradation in coastal soils.
    [Abstract] [Full Text] [Related] [New Search]