These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses.
    Author: Ghorbani A, Askari A, Malekan M, Nili-Ahmadabadi M.
    Journal: Sci Rep; 2022 Jul 11; 12(1):11754. PubMed ID: 35817887.
    Abstract:
    Glass-forming ability (GFA) of bulk metallic glasses (BMGs) is a determinant parameter which has been significantly studied. GFA improvements could be achieved through trial-and-error experiments, as a tedious work, or by using developed predicting tools. Machine-Learning (ML) has been used as a promising method to predict the properties of BMGs by removing the barriers in the way of its alloy design. This article aims to develop a ML-based method for predicting the maximum critical diameter (Dmax) of BMGs as a factor of their glass-forming ability. The main result is that the random forest method can be used as a sustainable model (R2 = 92%) for predicting glass-forming ability. Also, adding characteristic temperatures to the model will increase the accuracy and efficiency of the developed model. Comparing the measured and predicted values of Dmax for a set of newly developed BMGs indicated that the model is reliable and can be truly used for predicting the GFA of BMGs.
    [Abstract] [Full Text] [Related] [New Search]