These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phytoplankton growth and community shift over a short-term high-CO2 simulation experiment from the southwestern shelf of India, Eastern Arabian Sea (summer monsoon).
    Author: Sharma D, Biswas H, Silori S, Bandyopadhyay D, Shaik AUR.
    Journal: Environ Monit Assess; 2022 Jul 12; 194(8):581. PubMed ID: 35821440.
    Abstract:
    The southwestern shelf water of India (eastern Arabian Sea) experiences high seasonality. This area is one of the understudied regions in terms of phytoplankton response to the projected ocean acidification, particularly, during the summer monsoon when phytoplankton abundance is high. Here we present the results of a short-term simulated ocean acidification experiment (ambient CO2 424 µatm; high CO2, 843, 1138 µatm) on the natural phytoplankton assemblages conducted onboard (R. V. Sindhu Sadhana) during the summer monsoon (Aug 2017). Among the dissolved inorganic nutrients, dissolved silicate (DSi) and nitrate + nitrite levels were quite low (< 2 µM). Phytoplankton biomass did not show any net enhancement after the incubation in any treatment. Both marker pigment analysis and microscopy revealed the dominance of diatoms in the phytoplankton community, and a significant restructuring was noticed over the experimental period. Divinyl chlorophylla (DVChla) containing picocyanobacteria and 19'-hexanoyloxyfucoxanthin (19'HF) containing prymnesiophytes did not show any noticeable change in response to CO2 enrichment. A CO2-induced positive growth response was noticed in some diatoms (Guinardia flaccida, Cylindrotheca closterium, and Pseudo-nitzschia sp.) and dinoflagellates (Protoperidinium sp. and Peridinium sp.) indicating their efficiency to quickly acclimatize at elevated CO2 levels. This is important to note that the positive growth response of toxigenic pennate diatoms like Pseudo-nitzschia as well as a few dinoflagellates at elevated CO2 levels can be expected in the future-ocean scenario. The proliferation of such non-palatable phytoplankton may impact grazing, the food chain, and carbon cycling in this region.
    [Abstract] [Full Text] [Related] [New Search]