These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Author: Ottersen OP, Davanger S, Storm-Mathisen J. Journal: Exp Brain Res; 1987; 66(1):211-21. PubMed ID: 3582532. Abstract: An antiserum against conjugated glycine was characterized and applied to cerebellar sections of rats and baboons that had been perfusion-fixed with glutaraldehyde. After immunosorbent purification the serum reacted with brain protein-glutaraldehyde-glycine conjugates, but did not stain similar test conjugates prepared from other amino acids, including GABA and beta-alanine. In the rat cerebellum the glycine antiserum selectively labelled a subpopulation of Golgi neurons. Adjacent Vibratome sections treated with an antiserum against conjugated GABA revealed an about equally large subpopulation of immunopositive Golgi cells. A proportion of the Golgi cells that were cleaved by the plane of section contained both immunoreactivities. Additional evidence for a colocalization of glycine and GABA was obtained by postembedding staining of alternate semithin sections with the GABA antiserum and glycine antiserum, respectively. The ability of the antisera to distinguish between fixed glycine and GABA was corroborated by preincubation of the antisera with glutaraldehyde-amino acid fixation complexes: glycine complexes abolished staining with the glycine antiserum but had no effect on the GABA antiserum. The opposite effects were obtained with the GABA complexes. Matching the distributions of the respective immunoreactivities, [3H]glycine uptake was restricted to glomerulus-like structures in the granule cell layer whereas [3H]GABA uptake also occurred in punctate and fibrous profiles in the molecular layer. The baboon showed a distribution of glycine-like immunoreactivity similar to that in the rat, except that a few immunopositive neurons occurred in the molecular layer. The latter neurons were interpreted as outlying Golgi neurons; however, the possibility that they represent a subpopulation of basket cells could not be excluded. The Purkinje cells were negative in both species. Glial cells were weakly stained with the glycine antiserum but were strongly immunopositive after incubation with an antiserum raised against conjugates of the structurally similar amino acid beta-alanine. The present data suggest that glycine and GABA occur in about equally large subpopulations of Golgi neurons. A subpopulation of the Golgi neurons appears to contain both glycine and GABA.[Abstract] [Full Text] [Related] [New Search]