These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thin In-Plane In2 O3 /ZnIn2 S4 Heterostructure Formed by Topological-Atom-Extraction: Optimal Distance and Charge Transfer for Effective CO2 Photoreduction.
    Author: Zhao L, Yang B, Zhuang G, Wen Y, Zhang T, Lin M, Zhuang Z, Yu Y.
    Journal: Small; 2022 Jul; 18(28):e2201668. PubMed ID: 35833293.
    Abstract:
    Exploitation of atomic-level principles to optimize the charge transfer on ultrathin 2D heterostructures is an emerging frontier in relieving the energy and environmental crisis. Herein, a facile "topological-atom-extraction" protocol is disclosed, i.e., selective extraction of Zn from ultrathin half-unit-cell ZnIn2 S4 (HZIS) can embed thin In2 O3 domain into 1.60 nm thick HZIS layer to create an atomically thin in-plane In2 O3 /HZIS heterostructure. Thanks to the optimal distance and capability of charge separation, the in-plane In2 O3 /HZIS heterostructure is among the best ZnIn2 S4 -based CO2 reduction reaction (CRR) photocatalysts, and indeed demonstrates a significant increase (from 6.8- to 128-fold) in CO production rate compared with those of out-plane ZIS@In2 O3 and out-plane In2 O3 -HZIScalcined heterostructures. Density Functional Theory simulation reveals that whereas the out-plane heterostructure has a much smaller ∆q of 0.2-0.25 e, the in-plane heterostructure with "zero distance contact" has an optimal ∆q of 1.05 e between In2 O3 and HZIS that induces remarkable charge redistribution on the in-plane heterojunction interface and creates local electric field confined within the ultrathin layer. The charge redistribution efficiently directs the charge-carrier separation in S-scheme photocatalytic system and endows long-lifetime carrier to CRR active HZIS. The findings demonstrate the strong versatility of engineering atomic-level heterojunctions for efficient catalysts design.
    [Abstract] [Full Text] [Related] [New Search]