These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient Electroreduction of Nitrate into Ammonia at Ultralow Concentrations Via an Enrichment Effect.
    Author: Song Z, Liu Y, Zhong Y, Guo Q, Zeng J, Geng Z.
    Journal: Adv Mater; 2022 Sep; 34(36):e2204306. PubMed ID: 35839314.
    Abstract:
    The electroreduction of nitrate (NO3 - ) pollutants to ammonia (NH3 ) offers an alternative approach for both wastewater treatment and NH3 synthesis. Numerous electrocatalysts have been reported for the electroreduction of NO3 - to NH3 , but most of them demonstrate poor performance at ultralow NO3 - concentrations. In this study, a Cu-based catalyst for electroreduction of NO3 - at ultralow concentrations is developed by encapsulating Cu nanoparticles in a porous carbon framework (Cu@C). At -0.3 V vs reversible hydrogen electrode (RHE), Cu@C achieves Faradaic efficiency for NH3 of 72.0% with 1 × 10-3 m NO3 - , which is 3.6 times higher than that of Cu nanoparticles. Notably, at -0.9 V vs RHE, the yield rate of NH3 for Cu@C is 469.5 µg h-1 cm-2 , which is the highest value reported for electrocatalysts with 1 × 10-3 m NO3 - . An investigation of the mechanism reveals that NO3 - can be concentrated owing to the enrichment effect of the porous carbon framework in Cu@C, thereby facilitating the mass transfer of NO3 - for efficient electroreduction into NH3 at ultralow concentrations.
    [Abstract] [Full Text] [Related] [New Search]