These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering.
    Author: Isenberg WM, McEver RP, Phillips DR, Shuman MA, Bainton DF.
    Journal: J Cell Biol; 1987 Jun; 104(6):1655-63. PubMed ID: 3584243.
    Abstract:
    Platelet aggregation requires the binding of fibrinogen to its receptor, a heterodimer consisting of the plasma-membrane glycoproteins (GP) IIb and IIIa. Although the GPIIb-IIIa complex is present on the surface of unstimulated platelets, it binds fibrinogen only after platelet activation. We have used an immunogold-surface replica technique to study the distribution of GPIIb-IIIa and bound fibrinogen over broad areas of surface membranes in unstimulated, as well as thrombin-activated and ADP-activated human platelets. We found that the immunogold-labeled GPIIb-IIIa was monodispersed over the surface of unstimulated platelets, although the cell surface lacked immunoreactive fibrinogen. On thrombin-stimulated platelets, approximately 65% of the GPIIb-IIIa molecules were in clusters within the plane of the membrane. Fibrinogen, which had been released from the alpha-granules of these cells, bound to GPIIb-IIIa on the cell surface and was similarly clustered. To determine whether the receptors clustered before ligand binding, or as a consequence thereof, we studied the surface distribution of GPIIb-IIIa after stimulation with ADP, which causes activation of the fibrinogen receptor function of GPIIb-IIIa without inducing the release of fibrinogen. In the absence of added fibrinogen, the unoccupied, yet binding-competent receptors on ADP-stimulated platelets were monodispersed. The addition of fibrinogen caused the GPIIb-IIIa molecules to cluster on the cell surface. Clustering was also induced by the addition of the GPIIb-IIIa-binding domains of fibrinogen, namely the tetrapeptide Arg-Gly-Asp-Ser on the alpha-chain or the gamma-chain decapeptide gamma 402-411. These results show that receptor occupancy causes clustering of GPIIb-IIIa in activated platelets.
    [Abstract] [Full Text] [Related] [New Search]