These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bimetal-doped core-shell carbon derived from nickel-cobalt dual-ligand metal-organic framework for adjustable strong microwave absorption. Author: Lin K, Wu L, Wu T, Yuan C, Jia X, Yang X, Sui G. Journal: J Colloid Interface Sci; 2022 Dec; 627():90-101. PubMed ID: 35842969. Abstract: Metal-organic framework materials (MOF) have become a new generation of microwave absorption (MA) materials. However, it is still challenging to design an appropriate microstructure that can efficiently adjust the microwave absorbing characteristics. Herein, a novel bimetal-doped core-shell carbon derived from nickel-cobalt dual-ligand MOF has been successfully prepared. By changing the ratio of the second ligand, the morphology can change from sea urchin-like to rod-like and petal-like shapes, thereby regulating the final wave absorption performance of MOF derivatives. The Bi-MOF-1 exhibited strong microwave absorption (up to -70.70 dB), while Bi-MOF-2 presented broad effective absorption bandwidth (5.92 GHz). The analyses indicated that the excellent impedance matching can be attributed to the double-layer magnetic loss and multiple dielectric loss of the core-shell structure. This work provides a feasible approach for the design and preparation of functional composite structures based on MOF derivatives with controllable microwave absorbing properties.[Abstract] [Full Text] [Related] [New Search]