These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of biodegradable and polyethylene film mulches and their residues on soil bacterial communities.
    Author: Yang C, Huang Y, Long B, Gao X.
    Journal: Environ Sci Pollut Res Int; 2022 Dec; 29(59):89698-89711. PubMed ID: 35854074.
    Abstract:
    To investigate the effects of plastic film mulches and their residual films after use on soil bacterial communities, mulching experiment and the subsequent residual film experiment were conducted on winter-planting potato field in two locations. During mulching experiment, treatments biodegradable film mulch (BM) and PE film mulch (PM) reduced soil nutrient regarding available nitrogen and available potassium, as well as microbial biomass carbon (MBC), but increased urease activity, as compared to treatment no film mulch (NM). Soil moisture was significantly elevated by mulching practices and correlated with more microbial phyla than the other tested soil properties, indicating its important role in shaping soil bacterial communities. In addition, mulching practices increased alpha diversity of soil bacteria, although location heterogeneity was observed. Network analyses showed that both treatments BM and PM promoted the interrelations within bacterial communities and harbored more keystone taxa than treatment NM. During residual film experiment, residual films from BM and PM were incorporated into soil after harvest of potato. Treatment residual biodegradable film (RBF) significantly increased the content of MBC and activity of β-glucosidase (BG) as compared to treatments residual PE film (RPF) and no residual film (NRF), and BG had the most correlations with microbial phyla among all the tested soil properties. Treatments RBF and RPF increased the relative abundance of some dominant bacterial phyla, including Bacteroidetes, Actinobacteria, and Chlorofexi, and enhanced the interrelations within bacterial community, whereas more keystone taxa were harbored by treatment RBF, due to the increase of keystone taxa in phyla Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria. These results indicate that the indirect effects of biodegradable and PE film mulch as a soil surface barrier on soil are similar, whereas their direct effects via incorporation into soil as residual films show specificity.
    [Abstract] [Full Text] [Related] [New Search]