These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PSO Algorithm-Based Design of Intelligent Education Personalization System. Author: Li P, Yang J. Journal: Comput Intell Neurosci; 2022; 2022():9617048. PubMed ID: 35855797. Abstract: The application of artificial intelligence in the field of education is becoming more and more extensive and in-depth. The intelligent education system can not only solve the limitations of location, time, and resources in the traditional learning field but it can also provide learners with a convenient, real-time, and interactive learning environment and has become one of the important applications in the Internet field. Particle swarm optimization (PSO) is a swarm intelligence-enabled stochastic optimization scheme. It is derived from a model of bird population foraging behavior. Because of its benefits of ease of implementation, high accuracy, and quick convergence, this algorithm has gained the attention of academics, and it has demonstrated its supremacy in addressing real issues. This paper aims to study the optimization of PSO in the field of computational intelligence, improve the matching degree of learning resource recommendation and learning path optimization, and improve the learning efficiency of online learners. This paper suggests intelligent education as the center, takes the PSO algorithm as the main research object, and expounds the related concepts of intelligent education and PSO algorithm. It uses swarm intelligence algorithms for intelligent education personalized services. He focuses on PSO algorithm and its work in intelligent education recommendation and learning path planning. Experiments show that the average value of the difference between the two obtained by the NBPSO algorithm is 1.13E + 02 and the variance 1.88E + 02 is the smallest. Therefore, PSO aids in improving the quality and consistency of online course resource development. In conclusion, the research results of this paper further demonstrate the advantages of PSO algorithm in solving the problem of personalized service in intelligent education. It can promote the in-depth application of swarm intelligence optimization algorithms in intelligent online learning systems. This effectively enhances the intelligent service level of the online learning system and increases the efficiency of online learning.[Abstract] [Full Text] [Related] [New Search]