These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lower oceanic crust formed by in situ melt crystallisation revealed by seismic layering. Author: Guo P, Singh SC, Vaddineni VA, Grevemeyer I, Saygin E. Journal: Nat Geosci; 2022 Jul; 15(7):591-596. PubMed ID: 35855838. Abstract: Oceanic crust forms at mid-ocean spreading centres through a combination of magmatic and tectonic processes, with the magmatic processes creating two distinct layers: the upper and the lower crust. While the upper crust is known to form from lava flows and basaltic dikes based on geophysical and drilling results, the formation of the gabbroic lower crust is still debated. Here we perform a full waveform inversion of wide-angle seismic data from relatively young (7-12-million-year-old) crust formed at the slow spreading Mid-Atlantic Ridge. The seismic velocity model reveals alternating, 400-500 m thick, high and low velocity layers with ±200 m/s velocity variations, below ~2 km from the oceanic basement. The uppermost low-velocity layer is consistent with hydrothermal alteration, defining the base of extensive hydrothermal circulation near the ridge axis. The underlying layering supports that the lower crust is formed through the intrusion of melt as sills at different depths, that cool and crystallise in situ. The layering extends up to 5-15 km distance along the seismic profile, covering 300,000-800,000 years, suggesting that this form of lower crustal accretion is a stable process.[Abstract] [Full Text] [Related] [New Search]