These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The extent of involvement of ouabain, hippocampal expression of Na+/K+-ATPase, and corticosterone/melatonin receptors ratio in modifying stress-induced behavior differs according to the stressor in context. Author: Abdelmissih S, Sayed WM, Rashed LA, Kamel MM, Eshra MA, Attallah MI, El-Naggar RA. Journal: Braz J Med Biol Res; 2022; 55():e11938. PubMed ID: 35857994. Abstract: The aim of this study was to assess the effect of two types of stressors, regarding the extent of involvement of ouabain (OUA), hippocampal sodium/potassium ATPase (NKA) expression, and the hippocampal corticosterone receptors (CR)/melatonin receptors (MR) expression ratio, on the behavioral and cardiovascular responses and on the hippocampal cornu ammonis zone 3 (CA3) and dentate gyrus (DG). Thirty adult male Wistar albino rats aged 7-8 months were exposed to either chronic immobilization or a disturbed dark/light cycle and treated with either ouabain or vehicle. In the immobilized group, in the absence of hippocampal corticosterone (CORT) changes, rats were non-responsive to stress, despite experiencing increased pulse rate, downregulated hippocampal sodium/potassium pump, and enhanced hippocampal CR/MR expression ratio. Prolonged darkness precipitated a reduced upright attack posture, with elevated CORT against hippocampal MR downregulation. Both immobilization and, to a lesser extent, prolonged darkness stress resulted in histopathological and ultrastructural neurodegenerative changes in the hippocampus. OUA administration did not change the behavioral resilience in restrained rats, despite persistence of the underlying biochemical derangements, added to decreased CORT. On the contrary, with exposure to short photoperiods, OUA reverted the behavior towards a combative reduction of inactivity, with unvaried CR/MR and CORT, while ameliorating hippocampal neuro-regeneration, with co-existing NKA and MR repressions. Therefore, the extent of OUA, hippocampal NKA expression, and CR/MR expression, and subsequent behavioral and cardiac responses and hippocampal histopathology, differ according to the type of stressor, whether immobilization or prolonged darkness.[Abstract] [Full Text] [Related] [New Search]