These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effect of Astragalus membranaceus and Astragaloside IV in sepsis-induced acute kidney injury. Author: Tang JL, Xin M, Zhang LC. Journal: Aging (Albany NY); 2022 Jul 20; 14(14):5855-5877. PubMed ID: 35859295. Abstract: BACKGROUND: Acute kidney injury (AKI) is the most common target organ damage in sepsis. Sepsis-associated AKI (SA-AKI) may be characterized by damage to the renal tubular epithelium. In this study, the pharmacological mechanisms of Astragalus membranaceus and its active monomer Astragaloside IV (AS-IV) were predicted based on a network pharmacology approach and validated both in vitro and in vivo using the SA-AKI model. METHOD: We constructed an in vivo sepsis model using a mouse cecum ligation puncture (CLP) and HK-2 cells were treated with lipopolysaccharide (LPS) to mimic Gram (-) induced sepsis to assess the renal-protective efficacy of Astragalus membranaceus and AS-IV. RESULTS: The findings demonstrated that Astragalus membranaceus and AS-IV attenuate renal tubular injury in mice with polymicrobial sepsis, including vacuolization, loss of brush border, mitochondrial ultrastructural changes, and increased staining of kidney injury molecule-1 (KIM-1). AS-IV protected human proximal tubular epithelial (HK-2) cells against LPS induced cell viability loss. Both Astragalus membranaceus and AS-IV activated the PI3K/AKT pathway both in vitro and in vivo, as shown by Western blot and immunohistochemistry analysis. CONCLUSION: The findings demonstrate that Astragalus membranaceus and AS-IV protect against sepsis-induced kidney tubular injury by activating the PI3K/AKT pathway.[Abstract] [Full Text] [Related] [New Search]