These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An AIE photosensitizer with unquenched fluorescence based on nitrobenzoic acid for tumor-targeting and image-guided photodynamic therapy. Author: Wang Y, Pan X, Dai T, Wang L, Shi H, Wang H, Chen Z. Journal: Biomater Sci; 2022 Aug 24; 10(17):4866-4875. PubMed ID: 35861254. Abstract: Fluorescence quenching occurs in most nitroaromatic compounds due to photoinduced electron transfer (PET) effects, limiting their use as image-guided photosensitizers for anticancer photodynamic therapy (PDT) or as probes for nitroreductase in hypoxic cells. Herein, we developed a tumor-targeting aggregation-induced emission photosensitizer (AIE-PS), Biotin-TTVBA, by binding TTVBA (a nitrobenzoic acid-based AIE-PS with a free carboxylic acid group) to biotin. Biotin-TTVBA has near-infrared emission characteristics in DMSO containing 99% toluene, a large Stoke's shift (210 nm), high photostability, wash-free cell staining ability and type I/II photosensitivity. Compared with TTVBA, Biotin-TTVBA significantly increased cellular uptake (a 60-fold increase) and selective uptake of tumor cells (a 250% increase in the ratio of tumor cells to normal cells), resulting in enhanced antitumor activity against tumor cells (HeLa and MCF-7) and a decreased IC50 value (from >40 μM to 2.5 μM). Taken together, the results of this study call attention to AIE-PSs based on nitroaromatic groups because of their strong fluorescence and ROS generation ability, which can be used in image-guided photodynamic therapy and provide a new approach for tumor-targeting design of AIE-PSs.[Abstract] [Full Text] [Related] [New Search]