These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sulfammox forwarding thiosulfate-driven denitrification and anammox process for nitrogen removal.
    Author: Zhu Z, Qin J, Chen Z, Chen Y, Chen H, Wang X.
    Journal: Environ Res; 2022 Nov; 214(Pt 2):113904. PubMed ID: 35863443.
    Abstract:
    The coupled process of thiosulfate-driven denitrification (NO3-→NO2-) and Anammox (TDDA) was a promising process for the treatment of wastewater containing NH4+-N and NO3--N. However, the high concentration of SO42- production limited its application, which needs to be alleviated by an economical and effective way to promote the application of TDDA process. In this study, TDDA process was started in a relatively short time by stepwise replacing nitrite with nitrate and operated continuously for 146 days. Results presented that the average total nitrogen removal efficiency of 82.18% can be acquired at a high loading rate of 1.98 kg N/(m3·d) with maximum nitrogen removal efficiency up to 87.04%. It was observed that the increase of S/N ratio improved the denitrification efficiency and slightly inhibit the Anammox process. Batch tests showed that Sulfammox process appeared in TDDA process under certain conditions, further contributing 2.59% nitrogen removal and 10.46% sulfur removal (14.42 mg/L NH4+-N and 37.68 mg/L SO42--S were removed). This finding was mainly attributed to the reduction of sulfate in TDDA system to elemental S0 or HS-, which subsequently was used as an electron donor to realize the recycling of sulfate (SO42--S) pollutants and promote the sulfur-nitrogen (S-N) cycle. High-throughput analysis displayed that Anammox bacteria (Candidatus_Kuenenia), Sulfur-oxidizing bacteria (Thiobacillus) with relatively high abundance of 5.37%, 7.74%, respectively, guaranteeing the excellent nitrogen and sulfate removal performance in the reactor. The enrichment of phyla Chloroflexi (31.79%), Proteobacteria (31.82%), class Ignavibacteriales (10.55%), genus Planctomycetes (13.57%) further verified the exitence of Sulfammox process in the TDDA reactor. This study provides a new perspective for the practical application of TDDA in terms of reducing the production of high concentration SO42- and saving operational cost and strengthening deeply nitrogen removal.
    [Abstract] [Full Text] [Related] [New Search]