These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microplastics and di (2-ethylhexyl) phthalate synergistically induce apoptosis in mouse pancreas through the GRP78/CHOP/Bcl-2 pathway activated by oxidative stress. Author: Wang Y, Zhang Y, Sun X, Shi X, Xu S. Journal: Food Chem Toxicol; 2022 Sep; 167():113315. PubMed ID: 35863481. Abstract: With the widespread use of plastics, microplastics (MPs) and di(2-ethylhexyl) phthalate (DEHP) have become emerging environmental pollutants. The combined toxicity of MPs and DEHP on the mouse pancreas and the specific mechanism of toxicity remain unclear. To establish in vitro and in vivo models to address these questions, mice were continuously exposed to 200 mg/kg/d DEHP and 10 mg/L MPs for 4 weeks. In vitro, MIN-6 cells were treated with 200 μg/mL MPs and 200 μM DEHP for 24 h. Based on toxicity assessed using CCK8 of the equivalent TU binary mixture, the IC50 of the TU-mix of DEHP and MPs 0.692 < 0.8, indicating a synergistic effect of the two toxicants. Meanwhile, our data revealed that compared to the control group, MPs and DEHP combined treatment increased ROS levels, inhibited the activity, and enhanced the expression of GRP78, and CHOP. Simultaneously, activated CHOP decreased the expression of Bcl-2, and increased the expression of Bax. In conclusion, DEHP and MPs synergistically induce oxidative stress, and activate the GRP78/CHOP/Bcl-2 pathway to induce pancreatic apoptosis in mice. Our finding provides a new direction for the research on the specific mechanism of MPs and DEHP combined toxicity.[Abstract] [Full Text] [Related] [New Search]