These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-resolution CH stretch spectroscopy of jet-cooled cyclopentyl radical: First insights into equilibrium structure, out-of-plane puckering, and IVR dynamics.
    Author: Kortyna A, Reber MAR, Nesbitt DJ.
    Journal: J Chem Phys; 2022 Jul 21; 157(3):034302. PubMed ID: 35868923.
    Abstract:
    First, high-resolution sub-Doppler infrared spectroscopic results for cyclopentyl radical (C5H9) are reported on the α-CH stretch fundamental with suppression of spectral congestion achieved by adiabatic cooling to Trot ≈ 19(4) K in a slit jet expansion. Surprisingly, cyclopentyl radical exhibits a rotationally assignable infrared spectrum, despite 3N - 6 = 36 vibrational modes and an upper vibrational state density (ρ ≈ 40-90 #/cm-1) in the critical regime (ρ ≈ 100 #/cm-1) necessary for onset of intramolecular vibrational relaxation (IVR) dynamics. Such high-resolution data for cyclopentyl radical permit detailed fits to a rigid-rotor asymmetric top Hamiltonian, initial structural information for ground and vibrationally excited states, and opportunities for detailed comparison with theoretical predictions. Specifically, high level ab initio calculations at the coupled-cluster singles, doubles, and perturbative triples (CCSD(T))/ANO0, 1 level are used to calculate an out-of-plane bending potential, which reveals a C2 symmetry double minimum 1D energy surface over a C2v transition state. The inversion barrier [Vbarrier ≈ 3.7(1) kcal/mol] is much larger than the effective moment of inertia for out-of-plane bending, resulting in localization of the cyclopentyl wavefunction near its C2 symmetry equilibrium geometry and tunneling splittings for the ground state too small (<1 MHz) to be resolved under sub-Doppler slit jet conditions. The persistence of fully resolved high-resolution infrared spectroscopy for such large cyclic polyatomic radicals at high vibrational state densities suggests a "deceleration" of IVR for a cycloalkane ring topology, much as low frequency torsion/methyl rotation degrees of freedom have demonstrated a corresponding "acceleration" of IVR processes in linear hydrocarbons.
    [Abstract] [Full Text] [Related] [New Search]