These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Co-fermentation of sewage sludge and lignocellulosic biomass for production of medium-chain fatty acids. Author: Yin Y, Hu Y, Wang J. Journal: Bioresour Technol; 2022 Oct; 361():127665. PubMed ID: 35872272. Abstract: Medium-chain fatty acids (MCFAs) production from sewage sludge and lignocellulosic biomass (fallen leaves and grass) was explored. Co-fermentation of sludge and lignocellulosic biomass significantly accelerated the caproate production and promoted the longer-chain MCFAs formation. Co-fermentation of sludge and grass achieved the highest caproate production of 89.50 mmol C/L, which was 18.04 % and 41.73 % higher than the mono-fermentation of grass and sludge, respectively. Co-fermentation of sludge and leaves produced 63.80 mmol C/L caproate, which was 11.09 % and 1.03 % higher than the mono-fermentation of leaves and sludge, respectively. Microbial analysis showed that co-fermentation enriched CE microbes like genus Clostridium_sensu_stricto_13, Caprocipiproducens, Terrisporpbacter and Praraclostridium, and suppressed the competitive microbes like genus norank_f_Caldilineaceae and Desulfomicrobium. Functional enzymes analysis revealed that co-fermentation of sludge and leaves promoted MCFAs production through strengthening reverse β oxidation (RBO) pathway, while co-fermentation of sludge and grass stimulated MCFAs production by strengthening fatty acid biosynthesis (FAB) pathway.[Abstract] [Full Text] [Related] [New Search]