These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules.
    Author: Durrieu C, Bernier-Valentin F, Rousset B.
    Journal: Mol Cell Biochem; 1987 Mar; 74(1):55-65. PubMed ID: 3587230.
    Abstract:
    The interaction of glyceraldehyde 3-phosphate dehydrogenase with microtubules has been studied by measurement of the amount of enzyme which co-assembles with in vitro reconstituted microtubules. The binding of glyceraldehyde 3-phosphate dehydrogenase to microtubules is a saturable process; the maximum binding capacity is about 0.1 mole of enzyme bound per mole of assembled tubulin. Half saturation of microtubule binding sites is obtained at a concentration of glyceraldehyde 3-phosphate dehydrogenase of about 0.5 microM. Glyceraldehyde 3-phosphate dehydrogenase (between 0.1 and 2 microM) induces a concentration-dependent increase a) in the turbidity of the microtubule suspension without alteration of the net amount of polymer formed and b) in the amount of microtubule protein polymers after cold microtubule disassembly. There is a linear relationship between the intensity of the glyceraldehyde 3-phosphate dehydrogenase-induced effects and the amount of microtubule-bound enzyme. The specificity of the association of glyceraldehyde 3-phosphate dehydrogenase to microtubules has been documented by copolymerization experiments. Assembly-disassembly cycles of purified microtubules in the presence of a crude liver soluble fraction results in the selective extraction of a protein with an apparent molecular weight of 35,000 identified as the monomer of glyceraldehyde 3-phosphate dehydrogenase by peptide mapping and immunoblotting. In conclusion, microtubules possess a limited number of binding sites for glyceraldehyde 3-phosphate dehydrogenase. The binding of the glycolytic enzyme to microtubules shows a considerable specificity and is associated with alterations of assembly and disassembly characteristics of microtubules.
    [Abstract] [Full Text] [Related] [New Search]