These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly Thermoelectric ZnO@MXene (Ti3C2Tx) Composite Films Grown by Atomic Layer Deposition.
    Author: Yan L, Luo X, Yang R, Dai F, Zhu D, Bai J, Zhang L, Lei H.
    Journal: ACS Appl Mater Interfaces; 2022 Aug 03; 14(30):34562-34570. PubMed ID: 35876013.
    Abstract:
    Due to its unique high conductivity and flexibility, the two-dimensional MXene material (Ti3C2Tx) is expected to possess great potential in the thermoelectric field. However, the low thermoelectric performance from high thermal conductivity and a low Seebeck coefficient has limited its practical application. In this report, we demonstrate the uniform growth of ZnO layers on the laminar Ti3C2Tx membrane by atomic layer deposition (ALD). Benefiting from the low-temperature deposition characteristics of the ALD technique, the ZnO@Ti3C2Tx composite films maintain the basic apparent morphology of the original films after the deposition. We reveal that the Schottky barrier formed between ZnO and Ti3C2Tx exhibits an energy-filtering effect, significantly enhancing the Seebeck coefficient to result in more than a double increase in the power factor. Meanwhile, the strong phonon-interface scattering between ZnO and Ti3C2Tx is found to reduce the thermal conductivity of the composite films by a factor of four as compared to pure Ti3C2Tx ones, further improving the overall thermoelectric properties of the ZnO@Ti3C2Tx composite films. Our investigation provides an ALD-based strategy for growing wide band gap layers on the narrow band gap films to improve the thermoelectric performance of various MXene materials.
    [Abstract] [Full Text] [Related] [New Search]