These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Eco-Friendly Extraction, Structure, and Gel Properties of ι-Carrageenan Extracted Using Ca(OH)2. Author: Jiang F, Liu Y, Xiao Q, Chen F, Weng H, Chen J, Zhang Y, Xiao A. Journal: Mar Drugs; 2022 Jun 27; 20(7):. PubMed ID: 35877712. Abstract: An eco-friendly method for ι-carrageenan extraction from seaweed Eucheuma denticulatum through boiling and using a low concentration of Ca(OH)2 is reported. Compared to the traditional method of ι-carrageenan extraction using NaOH, the reported method using Ca(OH)2 had the advantages of using 93.3% less alkali and 86.8% less water, having a 25.0% shorter total extraction time, a 17.6% higher yield, and a 43.3% higher gel strength of the product. In addition, we evaluated the gel properties and structures of ι-carrageenan products extracted by Ca(OH)2 (Ca-IC) and NaOH (Na-IC). The Fourier transform infrared spectroscopy results showed that the structures of Ca-IC and Na-IC did not change remarkably. The results of the thermogravimetric analysis and differential scanning calorimetry showed that Ca-IC had the same thermal stability as Na-IC. The results of the textural analysis showed that Ca-IC had a higher hardness and better chewiness compared to Na-IC. Rheological results indicated that Ca-IC and Na-IC exhibited shear-thinning and non-Newtonian fluid properties, whereas the viscosity of Ca-IC was less than that of Na-IC. In conclusion, this new method of ι-carrageenan extraction using Ca-IC is markedly better and yields higher quality carrageenan than the conventional method of using Na-IC.[Abstract] [Full Text] [Related] [New Search]