These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film. Author: Quessab Y, Xu JW, Cogulu E, Finizio S, Raabe J, Kent AD. Journal: Nano Lett; 2022 Aug 10; 22(15):6091-6097. PubMed ID: 35877983. Abstract: Skyrmion racetrack memories are highly attractive for next-generation data storage technologies. Skyrmions are noncollinear spin textures stabilized by chiral interactions. To achieve a fast-operating memory device, it is critical to move skyrmions at high speeds. The skyrmion dynamics induced by spin-orbit torques (SOTs) in the commonly studied ferromagnetic films is hindered by strong pinning effects and a large skyrmion Hall effect causing deflection of the skyrmion toward the racetrack edge, which can lead to information loss. Here, we investigate the current-induced nucleation and motion of skyrmions in ferrimagnetic Pt/CoGd/(W or Ta) thin films. We first reveal field-free skyrmion nucleation mediated by Joule heating. We then achieve fast skyrmion motion driven by SOTs with velocities as high as 610 m s-1 and a small skyrmion Hall angle |θSkHE| ≲ 3°. Our results show that ferrimagnets are better candidates for fast skyrmion-based memory devices with low risk of information loss.[Abstract] [Full Text] [Related] [New Search]