These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Curcumin induces mitochondrial apoptosis in human hepatoma cells through BCLAF1-mediated modulation of PI3K/AKT/GSK-3β signaling.
    Author: Bai C, Zhao J, Su J, Chen J, Cui X, Sun M, Zhang X.
    Journal: Life Sci; 2022 Oct 01; 306():120804. PubMed ID: 35882275.
    Abstract:
    Curcumin is a yellow pigment extracted from the rhizome of turmeric, a traditional Chinese medicine. Here, we tested the hypothesis that curcumin-mediated downregulation of BCLAF1 triggers mitochondrial apoptosis in hepatoma cells by inhibiting PI3K/AKT/GSK-3β signaling. Treatment of the human hepatoma cell lines, HepG2 and SK-Hep-1, with various concentrations of curcumin revealed a time-dependent and concentration-dependent inhibition of cell proliferation, increased apoptosis, cell cycle arrest at the G0/G1 phase, reduced mitochondrial membrane potential, and reduced expression levels of PI3K, p-PI3K, AKT, p-AKT, GSK-3β, and p-GSK-3β. Additionally, curcumin suppressed the levels of apoptotic factors after treating the cells with LY294002, a PI3K inhibitor. Curcumin also suppressed the expression of BCLAF1. Treating stable BCLAF1 knockout HepG2 and SK-Hep-1 cells with curcumin further enhanced apoptosis and increased the number of cells in G0/G1 cell cycle arrest, while inhibiting the downregulation of PI3K/AKT/GSK-3β pathway-related proteins. Treatment of a nude mouse xenograft model bearing HepG2 cells with curcumin inhibited tumor growth, disrupted the cellular structure of the tumor tissue, and suppressed the expression of BCLAF1 and PI3K/AKT/GSK-3β proteins. In summary, our in vitro and in vivo analyses show that curcumin downregulates BCLAF1 expression, inhibits the activation of the PI3K/AKT/GSK-3β pathway, and triggers mitochondrial apoptosis in HCC. These findings uncover a potential therapeutic strategy leveraging the antitumor effects of curcumin against HCC.
    [Abstract] [Full Text] [Related] [New Search]