These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Greenhouse gas fluxes (CO2, N2O and CH4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide. Author: Maier R, Hörtnagl L, Buchmann N. Journal: Sci Total Environ; 2022 Nov 25; 849():157541. PubMed ID: 35882341. Abstract: Agriculture contributes considerably to the increase of global greenhouse gas (GHG) emissions. Hence, magnitude and drivers of temporal variations in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in croplands are urgently needed to develop sustainable, climate-smart agricultural practices. However, our knowledge of GHG fluxes from croplands is still very limited. The eddy covariance technique was used to quantify GHG budgets and N2O emission factors (EF) for pea and maize in Switzerland. The random forest technique was applied for gap-filling N2O and CH4 fluxes as well as to determine the relevance of environmental, vegetation vs. management drivers of the GHG fluxes during two cropping seasons. Environmental (i.e., net radiation, soil water content, soil temperature) and vegetation drivers (i.e., vegetation height) were more important drivers for GHG fluxes at field scale than time since management for the two crop species. Both crops acted as GHG sinks between sowing and harvest, clearly dominated by net CO2 fluxes, while CH4 emissions were negligible. However, considerable N2O emissions occurred in both crop fields early in the season when crops were still establishing. N2O fluxes in both crops were small later in the season when vegetation was tall, despite high soil water contents and temperatures. Results clearly show a strong and highly dynamic microbial-plant competition for N driving N2O fluxes at the field scale. The total loss was 1.4 kg N2O-N ha-1 over 55 days for pea and 4.8 kg N2O-N ha-1 over 127 days for maize. EFs of N2O were 1.5 % (pea) and 4.4 % (maize) during the cropping seasons, clearly exceeding the IPCC Tier 1 EF for N2O. Thus, sustainable, climate-smart agriculture needs to consider crop phenology and better adapt N supply to crop N demand for growth, particularly during the early cropping season when competition for N between establishing crops and soil microorganisms modulates N2O losses.[Abstract] [Full Text] [Related] [New Search]