These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Update on Renal Sympathetic Denervation for the Treatment of Hypertension.
    Author: Rao A, Krishnan N.
    Journal: Curr Cardiol Rep; 2022 Oct; 24(10):1261-1271. PubMed ID: 35895182.
    Abstract:
    PURPOSE OF REVIEW: Hypertension is a leading risk factor for all-cause mortality in adults; however, medication non-adherence and intolerance present an enormous treatment challenge. Given the critical role of renal sympathetic nerves in neurogenic control of blood pressure and pathophysiology of hypertension, renal sympathetic denervation (RDN) has been explored as a therapeutic strategy in hypertension treatment over the last 15 years. In this review, we will discuss the role of renal sympathetic nerves in the pathophysiology of hypertension, provide an update on the available evidence regarding the short- and long-term safety and effectiveness of RDN in the treatment of hypertension, and consider its future perspectives. RECENT FINDINGS: RDN is a percutaneous endovascular catheter-based neuromodulation approach that enables ablation of renal sympathetic nerve fibers within the adventitial layer of the renal arteries using radiofrequency (most extensively studied), ultrasound energy, or neurolytics (e.g., alcohol). In the last decade, advancements in procedural techniques and well-designed sham-controlled trials utilizing 24-h ambulatory blood pressure measurements have demonstrated that RDN has an excellent safety profile and results in a modest reduction of blood pressure, in a wide range of hypertensive phenotypes (mild to resistant), irrespective of antihypertensive drug use and this effect is sustained over a 3-year period. Superiority of a particular RDN modality has not been yet established. Despite strong evidence demonstrating efficacy and safety of RDN, current data does not support its use as a primary approach in the treatment of hypertension due to its modest treatment effect and concerns around long-term sustainability. Perhaps the best utility of RDN is in hypertensives intolerant to antihypertensive medications or as an adjunct to aldosterone antagonists in the management of resistant hypertension. Patient selection will be critical to demonstrate a meaningful benefit of RDN. Future well-designed studies are necessary to determine predictors and measures of response to RDN, long-term efficacy given question of renal nerve regeneration, comparison of available technologies, safety in patients with advanced kidney disease, and improvement in patient quality of life measures.
    [Abstract] [Full Text] [Related] [New Search]