These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Knockdown of circ_0004585 enhances the chemosensitivity of colorectal cancer cells to 5-fluorouracil via the miR-874-3p/CCND1 axis.
    Author: Wang S, Cao J, Pei L.
    Journal: Histol Histopathol; 2023 Jan; 38(1):99-112. PubMed ID: 35900059.
    Abstract:
    BACKGROUND: Colorectal cancer (CRC) is a serious threat to human health and is drug-resistant. Circular RNA _0004585 (circ_0004585) has been shown to be expressed in CRC, but whether it plays a role in CRC with chemoresistance remains unknown. Therefore, this study aimed to investigate the potential role of circ_0004585 in CRC with 5-fluorouracil (5-FU) resistance. METHODS: The expression of related genes was detected by quantitative real-time polymerase chain reaction (qRT-PCR), and the protein expressions of cleaved caspase-3, cleaved caspase-9, and cyclin D1 (CCND1) were detected by western blot. Cell functions were identified using CCK-8, colony formation, flow cytometry, tube formation and transwell assays. The putative relationships between miR-874-3p and circ_0004585 or CCND1 were validated by dual-luciferase reporter assays. Animal experiments were conducted to verify the effect of circ_0004585 on 5-FU resistance in vivo. RESULTS: Circ_0004585 was highly expressed in CRC tissues and cells, particularly in 5-FU-resistant CRC tissues and cells. Circ_0004585 knockdown enhanced 5-FU sensitivity to further inhibit CRC cell viability, colony formation, cell migration and invasion, and accelerate cell apoptosis. MiR-874-3p was the target of circ_0004585, and miR-874-3p depletion partially recovered the malignant behaviors of 5-FU-resistant CRC cells that were blocked by silencing of circ_0004585. In addition, CCND1 was the target of miR-874-3p, and overexpression of CCND1 was able to restore the malignant effects of 5-FU-resistant CRC cells that were repressed by miR-874-3p enrichment. Animal experiments confirmed that circ_0004585 knockdown inhibited the growth of CRC tumors and enhanced 5-FU sensitivity in vivo. CONCLUSION: Circ_0004585 promotes the development of CRC and increases 5-FU resistance in CRC through the miR-874-3p/CCND1 axis. These results suggest that circ_0004585 may be a therapeutic target for 5-FU-ressitant CRC.
    [Abstract] [Full Text] [Related] [New Search]