These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation. Author: Smrithi SP, Kottam N, Narula A, Madhu GM, Mohammed R, Agilan R. Journal: J Colloid Interface Sci; 2022 Dec; 627():956-968. PubMed ID: 35901574. Abstract: Carbon dots (C-dots) developed from beetroot is used for the rational design of cadmium sulphide based heterojunction photocatalysts (C-dots@CdS) using hydrothermal technique. The crystal structure, phase, morphology and optical characteristics of the synthesised materials are determined using X-ray diffraction (XRD), High resolution transmission electron microscopy (HR-TEM), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL spectroscopy), BET adsorption, X-ray photoelectron spectroscopy (XPS) and electrochemical studies. Using C-dots@CdS catalytic system, a superior photocatalytic activity relative to the undecorated CdS is observed. Among the C-dots@CdS samples, the CdS loaded with 6 wt% of C-dots exhibited enhanced hydrogen evolution rate compared with other samples considered for the study. CdS nanospheres modified with C-dots (6 wt%) resulted in the photocatalytic hydrogen evolution rate of 1582 µmolg-1 against 849 µmolg-1 evolution rate obtained for CdS nanospheres within 3 h. In spite of being 0D/0D type nano-heteroarchitecture, C-dots@CdS system obtained an apparent quantum yield of 6.37 % for the catalytic dosage of 20 mg under the irradiation of visible light. CdS in the C-dots@CdS system serves as the light harvester while C-dots with discernible edges can maintain the continuous supply of photo-excited charge carriers and hence can reduce the charge-carrier recombination. Further, the photodegradation of crystal violet dye using the optimised dosage of C-dots@CdS-6 exhibited an efficiency of 97.3 % in 120 min of visible light irradiation under neutral conditions. The detailed kinetic study reveals that the mechanism of photodegradation of crystal violet dye using C-dots@CdS system can be described using pseudo-second-order kinetics. The presence of oxygen rich hydrophilic surface functionalities of C-dots, the formation of near-surface heterojunction and the suitable band structure of C-dots@CdS system leading to the optimum charge carrier separation kinetics can be attributed to the enhanced photocatalytic performance. This work offers a promising strategy to develop bio-derived C-dots based heterojunction photocatalyst to address the burgeoning energy and environmental demands.[Abstract] [Full Text] [Related] [New Search]