These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: One-step preparation of N-doped grapheme quantum dots with high quantum yield for bioimaging and highly sensitive electrochemical detection of isoniazid. Author: Sivaselvam S, Viswanathan C, Ponpandian N. Journal: Biomater Adv; 2022 Apr; 135():212731. PubMed ID: 35929207. Abstract: Conventional techniques for synthesizing GQDs have a poor quantum yield (QY) that restricts their biological applications. Herein, we present a rapid, cost-effective and high quantum yield synthesis of nitrogen-doped graphene quantum dots (N-GQDs) through a scientific microwave reactor. The reaction parameters like microwave irradiation time, temperature, precursor concentration and pressure were optimized for achieving high quantum yield. The prepared N-GQDs exhibit bright blue fluorescence and excitation independent emission property with a quantum yield of 42.81%. In-vivo investigations on C. elegans revealed that the as-prepared N-GQDs are exceptionally biocompatible and maintain the normal physiological functioning of the primary and secondary targeted organs in nematodes. The synergetic effect of intestinal barrier and defecation behavior mitigates N-GQDs translocation into reproductive organs of nematode. In addition, the N-GQDs modified GCE was tested for electrochemical sensing characteristics towards the anti-tuberculosis drug isoniazid (INZ). The N-GQDs showed appreciable electrocatalytic performance towards INZ with high sensitivity (3.76 μA μM-1 cm-1). The differential pulse voltammetry (DPV) analysis of N-GQDs exhibit a lower detection limit of 10.91 nM for INZ. The N-GQDs modified sensor exhibits good reproducibility, excellent anti-interference ability and excellent analytical performance for INZ in real samples like human blood serum and urine samples.[Abstract] [Full Text] [Related] [New Search]